General Description

These monolithic converters are derived from the 256-bit read only memories, DM5488, and DM7488. Emitter connections are made to provide direct read-out of converted codes at outputs Y8 through Y1, as shown in the function tables. These converters demonstrate the versatility of a read only memory in that an unlimited number of reference tables or conversion tables may be built into a system. Both of these converters comprehend that the least significant bits (LSB) of the binary and BCD codes are logically equal, and in each case the LSB bypasses the converter as illustrated in the typical applications. This means that a 6 -bit converter is produced in each case. Both devices are cascadable to N bits.
An overriding enable input is provided on each converter which when taken high inhibits the function, causing all outputs to go high. For this reason, and to minimize power consumption, unused outputs Y 7 and Y 8 of the 185A and all "don't care" conditions of the 184 are programmed high. The outputs are of the open-collector type.

DM74184 BCD-TO-BINARY CONVERTERS

The 6-bit BCD-to-binary function of the DM74184 is analogous to the algorithm:
a. Shift BCD number right one bit and examine each decade. Subtract three from each 4-bit decade containing a binary value greater than seven.
b. Shift right, examine, and correct after each shift until the least significant decade contains a number smaller than eight and all other converted decades contain zeros.
In addition to BCD-to-binary conversion, the DM74184 is programmed to generate BCD 9's complement or BCD 10's complement. Again, in each case, one bit of the complement code is logically equal to one of the BCD bits; therefore, these complements can be produced on three lines. As outputs Y6, Y7 and Y8 are not required in the BCD-to-binary conversion, they are utilized to provide these complement codes as specified in the function table when the devices are connected as shown.

DM74185A BINARY-TO-BCD CONVERTERS

The function performed by these 6-bit binary-to-BCD converters is analogous to the algorithm:
a. Examine the three most significant bits. If the sum is greater than four, add three and shift left one bit.
b. Examine each BCD decade. If the sum is greater than four, add three and shift left one bit.
c. Repeat step b until the least-significant binary bit is in the least-significant BCD location.
(Continued)

Connection Diagram

TL/F/6561-1
Order Number DM74184N or DM74185AN
See NS Package Number N16E

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7 V
Input Voltage
5.5 V

Output Voltage
7V
Operating Free Air Temperature Range
Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V_{CC}	Supply Voltage	4.75	5	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	High Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage			0.8	V
$\mathrm{~V}_{\mathrm{OH}}$	High Level Output Voltage			5.5	V
I_{OL}	Low Level Output Current			12	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

'184 and '185A Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-12 \mathrm{~mA}$			-1.5	V
$I_{\text {CEX }}$	High Level Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$			100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=5.5 \mathrm{~V}$			1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$			25	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-1	mA
ICCH	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		65	95	mA
${ }^{\text {ICCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		80	99	mA

'184 and '185A Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L} 1}=400 \Omega, \mathrm{R}_{\mathrm{L} 2}=600 \Omega$$C_{L}=15 \mathrm{pF} \text { (See Test Circuit) }$		Units
			Min	Max	
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	Enable G to Output		35	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Enable G to Output		35	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Binary Select to Output		35	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Binary Select to Output		35	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

General Description (Continued)

DM74184 BCD-to-Binary

TABLE I. Package Count and Delay Times
for BCD-to-Binary Conversion

Input (Decades)	Packages Required	Total Delay Times (ns)	
		Typ	Max
2	2	56	80
3	6	140	200
4	12	196	280
5	19	280	400
6	28	364	520

TABLE II. Package Count and Delay Times
for Binary-to-BCD Conversion

Input (Bits)	Packages Required	Total Delay Times (ns)	
		Typ	Max
4 to 6	1	25	40
7 or 8	3	50	80
9	4	75	120
10	6	100	160
11	7	125	200
12	8	125	200
13	10	150	240
14	12	175	280
15	14	175	280
16	16	200	320
17	19	225	360
18	21	225	360
19	24	250	400
20	27	275	440

Function Tables															
Binary Words		Inputs						Outputs							
		Binary Select					Enable G	Y8	Y7	Y6	Y5	Y4	Y3	Y2	Y1
		E	D	C	B	A									
0	1	L	L	L	L	L	L	H	H	L	L	L	L	L	L
2	3	L	L	L	L	H	L	H	H	L	L	L	L	L	H
4	5	L	L	L	H	L	L	H	H	L	L	L	L	H	L
6	7	L	L	L	H	H	L	H	H	L	L	L	L	H	H
8	9	L	L	H	L	L	L	H	H	L	L	L	H	L	L
10	11	L	L	H	L	H	L	H	H	L	L	H	L	L	L
12	13	L	L	H	H	L	L	H	H	L	L	H	L	L	H
14	15	L	L	H	H	H	L	H	H	L	L	H	L	H	L
16	17	L	H	L	L	L	L	H	H	L	L	H	L	H	H
18	19	L	H	L	L	H	L	H	H	L	L	H	H	L	L
20	21	L	H	L	H	L	L	H	H	L	H	L	L	L	L
22	23	L	H	L	H	H	L	H	H	L	H	L	L	L	H
24	25	L	H	H	L	L	L	H	H	L	H	L	L	H	L
26	27	L	H	H	L	H	L	H	H	L	H	L	L	H	H
28	29	L	H	H	H	L	L	H	H	L	H	L	H	L	L
30	31	L	H	H	H	H	L	H	H	L	H	H	L	L	L
32	33	H	L	L	L	L	L	H	H	L	H	H	L	L	H
34	35	H	L	L	L	H	L	H	H	L	H	H	L	H	L
36	37	H	L	L	H	L	L	H	H	L	H	H	L	H	H
38	39	H	L	L	H	H	L	H	H	L	H	H	H	L	L
40	41	H	L	H	L	L	L	H	H	H	L	L	L	L	L
42	43	H	L	H	L	H	L	H	H	H	L	L	L	L	H
44	45	H	L	H	H	L	L	H	H	H	L	L	L	H	L
46	47	H	L	H	H	H	L	H	H	H	L	L	L	H	H
48	49	H	H	L	L	L	L	H	H	H	L	L	H	L	L
50	51	H	H	L	L	H	L	H	H	H	L	H	L	L	L
52	53	H	H	L	H	L	L	H	H	H	L	H	L	L	H
54	55	H	H	L	H	H	L	H	H	H	L	H	L	H	L
56	57	H	H	H	L	L	L	H	H	H	L	H	L	H	H
58	59	H	H	H	L	H	L	H	H	H	L	H	H	L	L
60	61	H	H	H	H	L	L	H	H	H	H	L	L	L	L
62	63	H	H	H	H	H	L	H	H	H	H	L	L	L	H
		X	X	X	X	X	H	H	H	H	H	H	H	H	H

Function Tables (Continued)

BCD-to-Binary Converter												
BCD Words		Inputs (See Note A)						Outputs (See Note B)				
		E	D	C	B	A	G	Y5	Y4	Y3	Y2	Y1
0	1	L	L	L	L	L	L	L	L	L	L	L
2	3	L	L	L	L	H	L	L	L	L	L	H
4	5	L	L	L	H	L	L	L	L	L	H	L
6	7	L	L	L	H	H	L	L	L	L	H	H
8	9	L	L		L	L	L	L	L	H	L	L
10	11	L	H	L	L	L	L	L	L	H	L	H
12	13	L	H	L	L	H	L	L	L	H	H	L
14	15	L	H	L	H	L	L	L	L	H	H	H
16	17	L	H	L	H	H	L	L	H	L	L	L
18	19	L	H	H	L	L	L	L	H	L	L	H
20	21	H	L	L	L	L	L	L	H	L	H	L
22	23	H	L	L	L	H	L	L	H	L	H	H
24	25	H	L	L	H	L	L	L	H	H	L	L
26	27	H	L	L	H	H	L	L	H	H		H
28	29	H	L	H	L	L	L	L	H	H	H	L
30	31	H	H	L	L	L	L	L	H	H	H	H
32	33	H	H	L	L	H	L	H	L	L	L	L
34	35	H	H	L	H	L	L	H	L	L	L	H
36	37	H	H	L	H	H	L	H	L	L	H	L
38	39	H	H	H	L	L	L	H	L	L	H	H
Any		X	X	X	X	X	H	H	H	H	H	H

BCD 9's or BCD 10's Complement Converter

BCD Word	Inputs (See Note C)								(See Note D)		
	E \dagger	D	C	B	A	G	Y8	Y7	Y6		
0	L	L	L	L	L	L	H	L	H		
1	L	L	L	L	H	L	H	L	L		
2	L	L	L	H	L	L	L	H	H		
3	L	L	L	H	H	L	L	H	L		
4	L	L	H	L	L	L	L	H	H		
5	L	L	H	L	H	L	L	H	L		
6	L	L	H	H	L	L	L	L	H		
7	L	L	H	H	H	L	L	L	L		
8	L	H	L	L	L	L	L	L	H		
9	L	H	L	L	H	L	L	L	L		
0	H	L	L	L	L	L	L	L	L		
1	H	L	L	L	H	L	H	L	L		
2	H	L	L	H	L	L	H	L	L		
3	H	L	L	H	H	L	L	H	H		
4	H	L	H	L	L	L	L	H	H		
5	H	L	H	L	H	L	L	H	L		
6	H	L	H	H	L	L	L	H	L		
7	H	L	H	H	H	L	L	L	H		
8	H	H	L	L	L	L	L	L	H		
9	H	H	L	L	H	L	L	L	L		
Any	X	X	X	X	X	H	H	H	H		

$\mathrm{H}=$ High Level, $\mathrm{L}=$ Low Level, $\mathrm{X}=$ Don't Care
Note A: Input Conditions other than those shown produce highs at outputs Y1 through Y5.
Note B: Output Y6, Y7, and Y8 are not used for BCD-to-Binary conversion.
Note C: Input conditions other than those shown produce highs at outputs Y6, Y7, and Y8.
Note D: Outputs Y1 through Y5 are not used for BCD 9's or BCD 10's complement conversion.
\dagger When these devices are used as complement converters, input E is used as a mode control. With this input low, the BCD 9's complement is generated; when it is high, the BCD 10's complement is generated.

Test Circuit

TL/F/6561-6
C_{L} includes probe and jig capacitance

Typical Applications

TL/F/6561-7
FIGURE 1. BCD-to-Binary Converter for Two BCD Decades
MSD-Most significant decade
LSD—Least significant decade
Each rectangle represents a DM74184

Typical Applications (Continued)

FIGURE 2. BCD-to-Binary Converter for Six BCD Decades
TL/F/6561-9

MSD—Most significant decade
LSD—Least significant decade
Each rectangle represents a DM74184

Typical Applications (Continued)

FIGURE 4. 6-Bit Binary-to-BCD Converter
MSD—Most significant decade
LSD—Least significant decade
Note A: Each rectangle represents a DM74185A.
Note B: All unused E inputs are grounded.

FIGURE 6. 9-Bit Binary-to-BCD Converter
MSD—Most significant decade
LSD—Least significant decade
Note A: Each rectangle represents a DM74185A.
Note B: All unused E inputs are grounded.

Typical Applications (Continued)

FIGURE 8. 16-Bit Binary-to-BCD Converter (See Note B)

MSD—Most significant decade
LSD—Least significant decade
Note A: Each rectangle represents a DM74185A.
Note B: All unused E inputs are grounded.

DM74184/DM74185A BCD-to-Binary and Binary-to-BCD Converters
Physical Dimensions inches (millimeters)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: $(+49)$ 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

