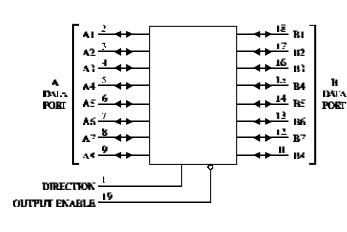
Octal 3-State Noninverting Bus Transceiver

These octal bus transceiver are designed for asynchronous twoway communication between data buses. The control function implementation minimized external timing requirements.

The device allows data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic level at the directional control (DIR) input. The enable input(E) can be used to disable the device so that the buses are effectively isolated.

- Bidirectional Bus Transceiver in a High-Density 20-Pin Package
- 3-state Outputs Dirve Bus Lines Directly
- P-N-P Inputs D-C Loading on Bus Lines
- Hysteresis at Bus Inputs Improve Noise Margins
- Typical Propagation Delay Times; Port to Port ... 8 ns

PIN ASSIGNMENT


INER-LON	1 O	35	۷ac
AL D	2	18	OUTPUT ENABLE
42	3	I¥ 🛛	Bi
AG L	4	17	82
44	5	16	11.7
کم ا	6	ďÞ	B4
46	7	14	Ba
Λ^{γ}	8	ъÞ	86
A2	9	12	B7
GED [Ð	<u> </u>	113

FUNCTION TABLE

Contr	ol Inputs		
Output Enable	Direction	Operation	
L	L	Data Transmitted from Bus B to Bus A	
L	Н	Data Transmitted from Bus A to Bus B	
Н	Х	Buses Isolated (High Impedance State)	

X = don't care

LOGIC DIAGRAM

PIN 20=V_{CC} PIN 10 = GND

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	7.0	V
V _{IN}	Input Voltage	7.0	V
V _{OUT}	Output Voltage	5.5	V
Tstg	Storage Temperature Range	-65 to +150	°C

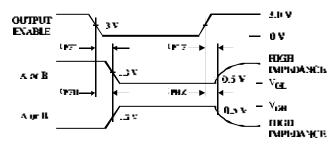
^{*}Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	Supply Voltage	4.75	5.25	V
V _{IH}	High Level Input Voltage	2.0		V
V _{IL}	Low Level Input Voltage		0.8	V
I _{OH}	High Level Output Current		-15	mA
I _{OL}	Low Level Output Current		24	mA
T _A	Ambient Temperature Range	0	+70	°C

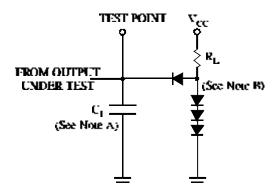
DC ELECTRICAL CHARACTERISTICS over full operating conditions

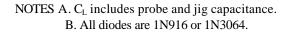
				Guarante	Guaranteed Limit	
Symbol		Parameter	Test Conditions	Min	Max	Unit
V _{IK}	Input Clarr	np Voltage	$V_{CC} = min, I_{IN} = -18 \text{ mA}$		-1.5	V
V _{OH}	High Leve	l Output Voltage	$V_{CC} = min, I_{OH} = -1.0 \text{ mA}$	2.7		V
			$V_{CC} = min, I_{OH} = -3.0 \text{ mA}$	2.4		
			$V_{CC} = min, I_{OH} = -15 mA$	2.0		
V _{OL}	Low Level	Output Voltage	$V_{CC} = min, I_{OL} = 12 mA$		0.4	V
			$V_{CC} = min, I_{OL} = 24 mA$		0.5	
V _{T+} - V _{T-}	Hysteresis		$V_{CC} = min$	0.2		V
I _{OZH}	Output Off	Current HIGH	$V_{CC} = max, V_{OUT} = 2.7 V$		20	μΑ
I _{OZL}	Output Off	Current LOW	$V_{CC} = max, V_{OUT} = 0.4 V$		-0.2	mA
I_{IH}	High Leve	l Input Current	$V_{CC} = \max$, $V_{IN} = 2.7$ V		20	μΑ
			$V_{CC} = max, V_{IN} = 5.5 V$ (A or B)		0.1	mA
			$V_{CC} = max, V_{IN} = 7.0 V$ for Pin1, Pin 19		0.1	
I _{IL}	Low Level	Input Current	$V_{CC} = max, V_{IN} = 0.4 V$		-0.2	mA
Io	Output Short Circuit Current		$V_{CC} = max, V_O = 0 V$ (Note 1)	-40	-225	mA
I _{CC}	Supply	Outputs High	V _{CC} = max		70	mA
	Current	Outputs Low	Outputs open		90]
		All outputs disable			95]

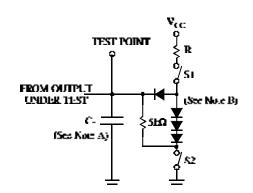

Note 1: Not more thanone output should be shorted at a time, and duration of the short-circuit should not exceed one second.

Symbol	Parameter	Test Condition	Min	Max	Unit
$t_{\rm PLH}$	Propagation Delay Time, Low-to-High Level Output (from A or B to Output)			12	ns
t _{PHL}	Propagation Delay Time, High-to-Low Level Output (from A or B to Output)	$C_L = 45 \text{ pF},$ $R_L = 667 \Omega$		12	ns
t _{PZH}	Output Enable Time to High Level (from OE to Output)			40	ns
t _{PZL}	Output Enable Time to Low Level (from OE to Output)			40	ns
$t_{\rm PHZ}$	Output Disable Time from High Level (from OE to Output)	$C_L = 5 \text{ pF}$		25	ns
t_{PLZ}	Output Disable Time from Low Level (from OE to Output)	$R_L = 667 \ \Omega$		25	ns

AC ELECTRICAL CHARACTERISTICS (T_A = 25°C, V_{CC} = 5.0 V, t_r = 15 ns,,


ENPLU Aur D		3.C V 0.V
	(mu→l ← →l ←-tnu	
OF IPLE	,	• V _{C∎} -
Bern		· Va_


 $t_{\rm f} = 6.0 \, \rm ns$)



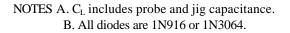

 t_{PZL} - S1 closed, S2 opened t_{PZH} - S1 opened, S2 closed t_{PLZ} , t_{PHZ} - S1 and S2 closed

Figure 1. Switching Waveforms (See Figure 3) Figure 2. Switching Waveforms (See Figure 4)

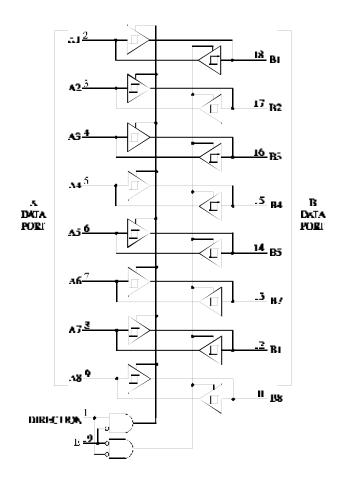


Figure 3. Test Circuit

Figure 4. Test Circuit

EXPANDED LOGIC DIAGRAM

